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Abstract

Background: The safe use of stacked transgenic crops in agriculture requires their environmental and health risk
assessment, through which unintended adverse effects are examined prior to their release in the environment.
Molecular profiling techniques can be considered useful tools to address emerging biosafety gaps. Here we report
the first results of a proteomic profiling coupled to transgene transcript expression analysis of a stacked commercial
maize hybrid containing insecticidal and herbicide tolerant traits in comparison to the single event hybrids in the
same genetic background.

Results: Our results show that stacked genetically modified (GM) genotypes were clustered together and distant
from other genotypes analyzed by PCA. Twenty-two proteins were shown to be differentially modulated in stacked
and single GM events versus non-GM isogenic maize and a landrace variety with Brazilian genetic background.
Enrichment analysis of these proteins provided insight into two major metabolic pathway alterations: energy/
carbohydrate and detoxification metabolism. Furthermore, stacked transgene transcript levels had a significant
reduction of about 34% when compared to single event hybrid varieties.

Conclusions: Stacking two transgenic inserts into the genome of one GM maize hybrid variety may impact the
overall expression of endogenous genes. Observed protein changes differ significantly from those of single event
lines and a conventional counterpart. Some of the protein modulation did not fall within the range of the natural
variability for the landrace used in this study. Higher expression levels of proteins related to the energy/carbohydrate
metabolism suggest that the energetic homeostasis in stacked versus single event hybrid varieties also differ.
Upcoming global databases on outputs from “omics” analyses could provide a highly desirable benchmark for the
safety assessment of stacked transgenic crop events. Accordingly, further studies should be conducted in order to
address the biological relevance and implications of such changes.
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Background
The first decade of GM crop production has been
dominated by genetically modified (GM) plants containing
herbicide tolerance traits, mainly based on Roundup Ready®
herbicide (Monsanto Company) spray, and on insect
protection conferred by Cry proteins-related traits, also
called ‘Bt toxins’. More recently, GM crop cultivation has
been following a trend of products combining both traits
by traditional breeding. In the existing literature, such
combinations are referred to as “stacked” or “pyramided”
traits or events [1]. In recent years, an increasing number
of GM plants that combine two or more transgenic traits
reached about 47 million hectares equivalent to 27% of
the 175 million hectares planted with transgenic crops
worldwide in 2013, up from 43.7 million hectares or 26%
of the 170 million hectares in 2012 [2].
According to the current regulatory practice within

the European Union (EU), stacked events are considered
as new GM organisms: prior to marketing they need
regulatory approval, including an assessment of their
safety, similar to single events [3]. In other countries,
like Brazil, stacked events are also considered new
GMOs but do not require full risk assessments if single
parental events have been already approved. In other
words, there is a simplified risk assessment procedure
(provided by Normative Resolution no 8/2009) that
requires less safety studies than those under first time
approval [4]. In the United States, for example, this is
not even obligatory [5].
To comply with current international guidance on risk

assessment of stacked GM events, additional information
on the stability of transgene insertions, expression levels
and potential antagonistic or synergistic interactions on
transgenic proteins should be provided [6,7].
Literature on molecular characterization of GM stacked

events is scarce, and the comparison of their expression
levels and potential cellular interaction to parental single
GM lines is absent. Few recent studies about the possible
ecological effects of stacked GM crops have been published,
but frequently lack the comparison to the GM single lines
or even the near-isogenic non-transgenic line [8-10]. In
addition, the approach taken by these authors was to assess
potential adverse effects of stacked transgenic crop
products such as pollen and grain. This approach does
not isolate the unique effects of stacking two or more
transgenic inserts. Neither has it identified intended and
unintended differences nor equivalences between the GM
plant and its comparator(s). Earlier published literature
also failed to recognize potential interactions between the
events present or their stability. GM plants containing
stacked events cannot be considered generally recognized
as safe without specific supporting evidence [3].
Profiling techniques, such as proteomics, allow the sim-

ultaneous measurement and comparison of thousands of
plant components without prior knowledge of their
identity [11]. The combination of target and non-target
methods allows a more comprehensive approach, and thus
additional opportunities to identify unintended effects of
the genetic modification are provided [12].
Accordingly, our novel approach uses proteomics as

a molecular profiling technique to identify potential
unintended effects resulting from the interbreeding of
GM varieties (e.g. synergistic or antagonistic interactions
of the transgenic proteins). The aim of this study was to
evaluate protein changes in stacked versus single event
and control plants under highly controlled conditions, to
examine the expression levels of transgenic transcripts
under different transgene dosage (one or two transgene
insertions) and to provide insight into the formulation of
specific guidelines for the risk assessment of stacked
events. We hypothesized that the combination of two
transgenes could differentially modulate endogenous
protein expression, which might have an effect on the
plant metabolism and physiology. In addition, the expres-
sion levels of two transgenes may be altered in GM stacked
events relative to single transformation events. To test these
hypotheses, we have used GM stacked maize genotype con-
taining cry1A.105/cry2Ab2 and epsps cassettes expressing
both insect resistance and herbicide tolerance as unlinked
traits, as well as genotypes of each single transgene alone,
being all maize hybrids in the same genetic background.
The seed set of stacked and single GM maize events, as well
as the conventional near-isogenic counterpart developed in
the same genetic background and a landrace variety,
enables the isolation of potential effects derived from stack-
ing two transgenes. Finally, we have performed two dimen-
sional differential gel electrophoresis analysis (2D-DIGE)
and quantitative Real-Time PCR experiments (RT-qPCR) to
determine differences in the proteome and transcription
levels of transgenes between stacked and single events.

Methods
Plant material and growth chamber conditions
Five maize varieties were used in this study. Two of them
are non-GM maize seeds, the hybrid AG8025 (named here
as ‘conventional’) from Sementes Agroceres and the open
pollinated variety Pixurum 5 (named here as ‘landrace’).
Pixurum 5 has been developed and maintained by small
farmers in South Brazil for around 16 years [13].
The other three varieties are GM and have the

same genetic background as the conventional variety
since they are produced from the same endogamic
parental lines. These are: AG8025RR2 (unique identifier
MON-ØØ6Ø3-6 from Monsanto Company, glyphosate
herbicide tolerance, Sementes Agroceres); AG8025PRO
(unique identifier MON-89Ø34-3 from Monsanto Company,
resistance to lepidopteran species, Sementes Agroceres)
and AG8025PRO2 (unique identifier MON-89Ø34-3 ×
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MON-ØØ6Ø3-6 from Monsanto Company, stacked event
resistant to lepidopteran species and glyphosate-based
herbicides, Sementes Agroceres). These are named in this
study as RR, Bt and RRxBt, respectively (Table 1). The
AG8025 variety is the hybrid progeny of the single-cross
between maternal endogamous line “A” with the paternal
endogamous line “B”. Thus, the used hybrid variety seeds
have high genetic similarity (most seeds should be AB
genotype). All these five commercial varieties were
produced by the aforementioned company/farmers and
are commonly found in the market in Brazil.
The cultivation of MON-ØØ6Ø3-6, MON-89Ø34-3, and

MON-89Ø34-3 × MON-ØØ6Ø3-6 has been approved in
Brazil in 2008 [14], 2009 [15] and 2010 [16] respectively.
The stacked hybrid MON-89Ø34-3 × MON-ØØ6Ø3-6
expresses two insecticidal proteins (Cry1A.105 and Cry2Ab2
proteins derived from Bacillus thuringiensis, which are
active against certain lepidopteran insect species) and two
identical EPSPS proteins providing tolerance to the
herbicide glyphosate. The novel traits of each parent
line have been combined through traditional plant
breeding to produce this new hybrid. The experimental
approach currently applied for the comparative assessment
requires the use of conventional counterpart and the
single-event counterparts, all with genetic background as
close as possible to the GM plant, as control [6,7,17].
After the confirmation by PCR of the transgenic events

in both single and stacked GM seeds and the absence in
the conventional and landrace ones (data not shown), the
seeds from all the five varieties were grown side by side in
growth chambers (EletrolabTM model 202/3) set to 16 h
light period and 25 °C (± 2 °C). Seedlings were germinated
and grown in Plantmax HT substrate (Buschle & Lepper
S.A.) and watered daily. No pesticide or fertilizer was
applied. Around 50 plants were grown in climate cham-
bers out of which fifteen plants were randomly sampled
per maize variety (genotype). The collected samples were
separated in three groups of five plants. The five plants
of each group were pooled and were considered one
biological replicate. Maize leaves were collected at V4
stage (20 days after seedling). Leaf pieces were cut out,
weighed and placed in 3.8 ml cryogenic tubes before
Table 1 Transgenic and non-transgenic comercial maize hybr

Maize variety comercial name GM event Transg

AG8025PRO2 MON-89Ø34-3 x MON-ØØ6Ø3-6 cry1A.1

AG8025PRO MON-89Ø34-3 cry1A.1

AG8025RR2 MON-ØØ6Ø3-6 epsps/e

AG8025 n.a n.a.

Pixurum 5 n.a. n.a.

Transgenic maize varieties and its corresponding transformation events, plus contai
individual plants sampled per maize variety, as well as their designation, are also pr
Note: Not applied (n.a.).
immersion in liquid nitrogen. The samples were kept
at −80 °C until RNA and protein extraction. This experi-
ment was repeated and a second relative quantification
analysis of transgene transcripts was performed in order
to reproduce the results.

RNA isolation and relative quantification analysis of
transgene transcripts
RNA was extracted from approximately 100 mg of
frozen leaf tissue using RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s
instructions. In brief, samples were homogenized with
guanidine-isothiocyanate lysis buffer and further purified
using silica-membrane. During purification, in-column
DNA digestion was performed using RNAse-free DNAse I
supplied by Qiagen to eliminate any remaining DNA prior
to reverse transcription and real-time PCR. The extracted
RNA was quantified using NanoDrop 1000 (Thermo Fisher
Scientific, Wilmington, USA).
Reverse-transcription quantitative PCR (RT-qPCR) assay

was adapted from previously developed assays for the
specific detection of MON-89Ø34-3 × MON-ØØ6Ø3-6
transgenes [18] to hydrolysis ZEN - Iowa Black® Fluorescent
Quencher (ZEN/ IBFQ) probe chemistry (Integrated DNA
Technologies, INC Iowa, USA).
Following quantification, cDNA was synthesized and

amplification of each target gene was performed using
the QuantiTect Probe RT-PCR Kit (Qiagen) according
to the manufacturer’s instructions. RT-qPCR experiment
was carried out in triplicates using StepOne™ Real-Time
PCR System (Applied Biosystems, Singapore, Singapore).
Each 20 μl reaction volume comprised 10 uM of each
primer and probe and 50 ng of total RNA from each
sample. The amplification efficiency was obtained from
relative standard curves provided for each primer and
calculated according to Pfaffl equations [19].
The two most suitable endogenous reference genes

out of five candidates (ubiquitin carrier protein, folyl-
polyglutamate synthase, leunig, cullin, and membrane
protein PB1A10.07c) were selected as internal standards.
The candidate genes were chosen based on the previous
work of Manoli et al. [20]. The selection of the two best
id varieties used in this study

enes No of samples
(individual plants)

Designated in
this study

05/cry2Ab2 x epsps/epsps 15 RRxBt samples

05/cry2Ab2 15 Bt samples

psps 15 RR samples

15 Conventional samples

15 Landrace samples

ning transgenes, were described in the following rows. The numbers of
ovided.
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endogenous reference genes for this study was performed
using NormFinder (Molecular Diagnostic Laboratory,
Aarhus University Hospital Skejby, Denmark) statistical
algorithms [21]. Multiple algorithms have been devised to
process RT-qPCR quantification cycle (Cq). However,
NormFinder algorithm has the capability to estimate both
intragroup and intergroup variance and the identification
of the two reference genes as most stable normalizers
[22]. The leunig and membrane protein PB1A10.07c genes
were used to normalize epsps, cry1a.105 and cry2ab2
mRNA data due to their best stability value (SV for best
combination of two genes 0.025, data not shown).
Conventional samples were also analyzed in order to
check for PCR and/or seed contaminants. Primer and
probe sequences used, as well as Genebank ID of target
genes, are provided in Additional file 1. The primers and
probes were assessed for their specificity with respect to
known splice variants and single-nucleotide polymorphism
positions documented in transcript and single-nucleotide
polymorphism databases.
The normalized relative quantity (NRQ) was calculated

for stacked transgenic event samples relative to one of
the three-pooled samples correspondent to the single
transgenic event according to the Pfaffl equations [19].

Protein extraction and fluorescence hybridization
Approximately 100 mg of each sample was separately
ground-up in a mortar with liquid nitrogen, and protein
extraction was subsequently carried out according to
Carpentier et al. [23], with some modification. Phenol
extraction and subsequent methanol/ammonium acetate
precipitation were performed and PMSF was used as
protease inhibitor. Pellets were re-suspended in an
urea/thiourea buffer compatible to further fluorescent
labeling (4% w/v CHAPS, 5 mM PMSF, 7 M urea, 2 M
thiourea and 30 mM Tris-base). Protein quantification
was determined by means of a copper-based method using
2-D Quant Kit (GE Healthcare Bio-Sciences AB, Uppsala,
Sweden). Before sample storage in −80 °C, 80 ug of each
protein sample pool were labeled with 400 ρmol/ul of
CyDye DIGE fluors (Cy3 and Cy5; GE Healthcare),
according to the manufacturer’s instructions. An internal
standard for normalization was used in every run; this
was labeled with Cy2. The internal standard is a mixture
of equal amounts of each plant variety sample. After
protein-fluor hybridization, samples were treated with
lysine (10 mM) to stop the reaction and then mixed
together for 2D-DIGE gel electrophoresis separation.
Sample pairs were randomly selected for two-dimensional
electrophoresis runs.

2D-DIGE gel electrophoresis conditions
After protein labeling, samples were prepared for isoelectric
focusing (IEF) step. Strip gels of 24 cm with a linear pH
range of 4–7 (GE Healthcare) were used. Strips were
initially rehydrated with labeled protein samples (7 M
urea, 2 M thiourea, 2% w/v CHAPS, 0.5% v/v IPG
buffer (GE Healthcare), 2% DTT). Strips were then
processed using an Ettan IPGPhor IEF system (GE
Healthcare) in a total of 35000 Volts.h−1 and, subsequently,
reduced and alkylated for 30 min under slow agitation in
Tris–HCl solution (75 mM) pH 8.8, containing 2% w/v
SDS, 29.3% v/v glycerol, 6 M urea, 1% w/v DTT and 2.5%
w/v iodocetamide. Strips were placed on top of SDS-PAGE
gels (12%, homogeneous) and used in the second dimension
run with a Hoefer DALT system (GE Healthcare). 2D gel
electrophoresis conditions were performed as described by
Weiss and Görg [24]. Gels were immediately scanned with
the FLA-9000 modular image scanner (Fujifilm Lifescience,
Dusseldorf, Germany). To ensure maximum pixel intensity
between 60 000 and 90 000 pixels for the three dyes,
all gels were scanned at a 100 μm resolution and the
photo multiplier tube (PMT) voltage was set between
500 and 700 V.
Preparative gels for each plant variety were also

performed in order to extract relevant spots. These
were performed with a 450 ug load of total protein pools
in 24 cm gels from each variety, separately, and stained
with coomassie brilliant blue G-250 colloidal (MS/MS
compatible) as described by Agapito-Tenfen et al. [25].

Image analysis
The scanned gel images were transferred to the ImageQuant
V8.1 software package (GE Healthcare) for multiplexing
colored DIGE images. After cropping, the images were
exported to the software ImageMasterTM 2D Platinum
7.0, version 7.06 (GE Healthcare) for cross comparisons
between gels. Automatic spots co-detection of each
gel was performed followed by normalization with the
corresponding internal standard and matching of biological
replicates and varieties. Manual verification of matching
spots was applied. This process results in highly accurate
volume ratio calculations. Landmarks and other annota-
tions were applied for determination of spot experimental
mass and pI (isoelectric point).

In-gel digestion and protein identification by MS/MS
Spots from preparative gels were excised and sent to the
Proteomic Platform Laboratory at the University of
Tromsø, Norway, for processing and analysis. These
were subjected to in-gel reduction, alkylation, and tryptic
digestion using 2–10 ng/μl trypsin (V511A; Promega)
[26]. Peptide mixtures containing 0.5% formic acid were
loaded onto a nano ACQUITY Ultra Performance LC
System (Waters Massachusetts, USA), containing a 5-μm
Symmetry C18 Trap column (180 μm× 20 mm; Waters)
in front of a 1.7-μm BEH130 C18 analytical column
(100 μm× 100 mm; Waters). Peptides were separated with



Agapito-Tenfen et al. BMC Plant Biology 2014, 14:346 Page 5 of 18
http://www.biomedcentral.com/1471-2229/14/346
a gradient of 5–95% acetonitrile, 0.1% formic acid, with a
flow of 0.4 μl/min eluted to a Q-TOF Ultima mass
spectrometer (Micromass; Waters). The samples were
run in data-dependent tandem MS mode. Peak lists were
generated from MS/MS by the Protein Lynx Global server
software (version 2.2; Waters). The resulting ‘pkl’ files were
searched against the NCBInr 20140323 protein sequence
databases using Mascot MS/MS ion search (Matrix
Sciences; http://matrixscience.com). The taxonomy used
was Viridiplantae (Green Plants) and ‘all entries’ and
‘contaminants’ for contamination verification. The following
parameters were adopted for database searches: complete
carbamidomethylation of cysteines and partial oxidation of
methionines; peptide mass tolerance ± 100 ppm; fragment
mass tolerance ± 0.1 Da; missed cleavages 1; and
significance threshold level (P < 0.05) for Mascot scores
(−10 Log (P)). Even though high Mascot scores are
obtained with significant values, a combination of
automated database searches and manual interpretation
of peptide fragmentation spectra were used to validate
protein assignments. Molecular functions and cellular
components of proteins were searched against ExPASy
Bioinformatics Resource Portal (Swiss Institute for
Bioinformatics; http://expasy.org) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) Orthology system database
release 69.0 2014 (http://kegg.jp/kegg/ko.html). In order
to understand and interpret these data and to test our
hypothesis on the systemic response of the proteomes we
have generated, we have further classified and filtered the
list of identified proteins for pathway abundances. The
enrichment analysis to compare the abundance of specific
functional biological processes has been performed using
BioCyc Knowledge Library (http://biocyc.org/) [27] and
their corresponding statistical algorithms. The proteins
were searched against the maize (Zea mays) database.

Statistical analysis
Real-time relative quantification data were plotted and
manually analyzed using Microsoft Excel (Microsoft,
Redmond, WA). Normalized gene expression data was
obtained using the Pfaffl method for efficiency correction
[19]. Cq average from each technical replicate was
calculated for each biological replicate and used to
make a statistical comparison of the genotypes/treatment
based on the standard deviation. Due to non-normal
distribution, the fold change data were log10 transformed.
The fold change means obtained for single versus
stacked GM event were compared using T-test at P <0.05
(R program software) [28]. Information on real-time data
for this study has followed guidelines from the Minimum
Information for Publication of Quantitative Real-Time
PCR Experiments [29].
The main sources of variation in the 2D-DIGE experi-

ment dataset were evaluated by unsupervised multivariate
PCA, using Euclidean distance for quantitative analysis.
PCA analyses were performed by examining the correlation
similarities between the observed measures. The spot
volume ratio was analyzed using covariance matrix on
Multibase Excel Add-in software version 2013 (Numerical
Dynamics; http://www.numericaldynamics.com). For the
2D-DIGE experiment, one-way ANOVA was used to inves-
tigate differences at individual protein levels. Tukey test at
P < 0.05 was used to compare the multiple means in the
dataset using R program software [28]. The calculations
were performed on normalized spot volume ratios based on
the total intensity of valid spots in a single gel. Differences
at the level P < 0.05 were considered statistically significant.
Statistical analyses were performed using ImageMasterTM

2D Platinum 7.0, version 7.06 (GE Healthcare).

Results and discussion
To examine potential unintended effects of combining
transgenes by conventional breeding techniques, the
protein expression profile, as well as transgenic mRNA
levels, of stacked GM maize leaves expressing insecticidal
and herbicide tolerance characteristics were evaluated in
comparison to four other maize genotypes. These were
two single event GM hybrids with the same genetic
background; the conventional counterpart non-GM hybrid
AG8025 and a landrace variety (Pixurum 5) exposed to
highly controlled growth conditions.

Transcript levels of epsps, cry1A.105 and cry2Ab2 in leaves
of stacked GM maize
A clear reduction of transcript levels for all three transgenes
was observed in stacked compared to single events GM
maize plants. Figure 1 shows normalized relative quantities
for epsps, cry1A.105 and cry2Ab2 transcripts in both single
and stacked events from experiment 1 (Figure 1A) and
experiment 2 (Figure 1B). Performing experiment 2 under
the same conditions reproduced the results of experiment 1.
In fact, statistically significance was observed for epsps
transcript in both experiments. Whereas experiment 1 had
cry1A.105 transcript and experiment 2 had cry2Ab2 with
statistically significant reduction, most probably due to
biological variability observed by SD bars.
In the case of epsps transcripts, the average reduction in

transgene accumulation was approximately 31%. Tran-
scripts from cry1A.105 showed reduction of transgene
accumulation at an average of 41%, whereas cry2Ab2
transcripts demonstrated a 29% reduction.
There is considerable variation in the expression of

transgenes in individual transformants, which is not due to
differences in copy number [30]. Nonetheless, the num-
ber of transgenes present in one genome can involve
transgene/transgene interactions that might occur when
homologous DNA sequences (e.g. expression controlling
elements) are brought together [31]. Homology-dependent

http://matrixscience.com
http://expasy.org
http://kegg.jp/kegg/ko.html
http://biocyc.org/
http://www.numericaldynamics.com


Figure 1 Transgene transcripts normalized relative expression levels measured by delta-delta Cq method and Pffafl [19] correction
equation. The epsps, cry1A.105 and cry2Ab2 transgenes were quantified from stacked versus single transgenic maize events grown under
controlled conditions at V3 stage. Experiment 1 (A) and under the same conditions in Experiment 2 (B). Samples are means of three pools, each
derived from five different plants. ‘RR’ samples are transgenic maize seedlings from MON-ØØ6Ø3-6 event, ‘Bt’ samples are from MON-89Ø34-3
event, and ‘RRxBt’ samples are transgenic maize seedlings from MON-89Ø34-3 x MON-ØØ6Ø3-6 event. Bars indicate standard deviation and
statistically significant values (P < 0.05) are represented by ‘*’.
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gene silencing has been revealed in several organisms as a
result of the introduction of transgenes [32-36]. Gene
silencing as a consequence of sequence duplications is
particularly prevalent among plant species. The intro-
duction of transgenes in plants produces at least two
different homology-dependent gene-silencing phenomena:
post-transcriptional gene silencing (PTGS) and transcrip-
tional gene silencing (TGS) [37].
Typically, one transfer DNA (abbreviated T-DNA)

exerts a dominant epigenetic silencing effect on another
transgene on a second (unlinked) trans-acting coding
T-DNA sequence. Silencing is often correlated with
hyper-methylation of the silenced gene, which can persist
after removal of the silencing insert. The results reported
by Daxinger et al. [38] imply that gene silencing mediated
by 35S promoter homology between transgenes and
T-DNAs used for insertional mutagenesis is a com-
mon problem and occurs in tagged lines from different
collections.
Homologous P35S promoters control the epsps and

cry1A.105 transgenes present in the stacked line used in
this study. Whether silencing of 35S promoter in stacked
events might be mediated by TGS or PTGS or other pro-
cesses is not yet clear and requires further investigation.
Reduced transgene expression might also be related

to the high energetic demand of the cell. In this regard,
increasing evidences support the idea that constitutive
promoters involve a high energetic cost and yields a
penalty in transgenic plants [39-42]. In fact, results from
research on salt tolerance suggest that the greater Na+

exclusion ability of the homozygous transgenic line
over-expressing HAL1 induces a greater use of organic
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solutes for osmotic balance, which seems to have an
energy cost and hence a growth penalty that reverts
negatively on fruit yield [42].
Nonetheless, changes in transgene expression levels in

stacked events might affect their safety and utility. However,
there is not enough data on the correlation between mRNA
accumulation and transgenic protein levels. Therefore,
further studies should be performed in order to inves-
tigate if reduced accumulation of transgene transcripts
corresponds to reduced levels of Bt toxin production
and the biological meaning behind these different
levels of protein expression. One of the few examples
of such investigation is the recent work of Koul et al.
[43] on transgenic tomato line expressing modified
cry1Ab, which showed correlation between transgene
transcripts and protein levels in different plants. But while
the bioassay results reflected a concentration-dependent
response in the insect pest Spodoptera litura, the results
on Helicoverpa armigera showed 100% mortality under
different mRNA/protein concentrations [43]. The latter
results give insights into possible uncorrelated biological
relevance and protein levels for some target species.
Field-evolved resistance to Bt toxins in GM crops was

first reported in 2006 for S. frugiperda in Puerto Rico
[44]. Many other reported cases of field-resistance were
confirmed as well [45]. The causes of such resistance
were mainly related to the lack of compliance of growers
that may not strictly adhere to the requirements for
planting refuge areas with non-GM varieties [46,47].
Secondly, toxin doses might have been too low or
variable to consistently kill heterozygous resistant insects
[44,46,48,49]. Seasonal and spatial variation of Cry toxin
content in GM cotton has been frequently linked to plant
characteristics and environmental conditions [50]. In Bt
maize, concentrations of Cry toxins have been shown to
decline as the growing season progresses, but seasonal
changes in toxin concentration are variable among toxins
and cultivars [51]. The reasons for the seasonal reduction
in Cry protein concentration remain unclear, but it could
be related to mRNA instability, declining promoter activity,
reduced nitrogen metabolism, lower overall protein
production, and toxin interactions [52,53].
On the other hand, pyramiding two or more cry trans-

genes is expected to be more effective than single Cry toxins
alone. It can reduce heritability of resistance and, thus, delay
resistance [54]. But, declines in the concentration of one
toxin in a pyramid could also invalidate the fundamental
assumption of the pyramid strategy (i.e., the killing of insects
resistant to one toxin by another toxin), and thus accelerate
evolution of resistance [55]. Downes et al. [56] have pro-
vided a five-year data set showing a significant exponential
increase in the frequency of alleles conferring Cry2Ab resist-
ance in Australian field populations of H. punctigera since
the adoption of a second generation, two-toxin Bt cotton.
Moreover, in cases where the expression level of an
introduced/modified trait in a GM stacked event falls
outside the range of what was determined in the parental
line, a re-evaluation of the environmental aspects might
be necessary, where considered relevant [3].
Monsanto submitted an approval application to the

Comissão Técnica Nacional de Biossegurança (CTNBio,
Brazil) for the stacked GM event employed in the present
study. The document presented results of protein quantifi-
cation for both stacked and single events, grown under
farm conditions in three locations in Brazil [57]. The
results show discrepancies for Cry and EPSPS protein
levels determined by ELISA assay, in stacked versus single
events. Leaves of single event plants (MON-89Ø34-3)
had an average of 51, 24 and 24 ug.g−1 (fresh weight)
for the three locations compared to 33, 26 and 38 ug.g−1

(fresh weight) of Cry2Ab2 protein in the stacked event
plants (MON-89Ø34-3 x MON-ØØ6Ø3-6). Large variation
(standard deviation values up to 19) and small sampling
size (N = 4) must be taken into account and likely explain
lack of statistical significance. To the best of our knowledge
we are now presenting the first robust report on reduced
levels of transgenic transcripts in commercial stacked
GM varieties.
There is a lack of published data on transgene product

expression levels in stacked versus single transgene GM
crops in the scientific literature. Although data on expres-
sion levels for stacked GM events are required for approval
according to EU regulations (N° 503/2013), these are rarely
disclosed or they are considered insufficient [58-60].

Proteomic profile of stacked RRxBt transgenic maize
The mean total protein content was 1.43 ± 0.6 mg.g−1

(fresh weight) of leaf material. No statistically significant
difference was found between replicates and treatments.
The genotype comparisons showed difference in the one-
way ANOVA, followed by Tukey (P < 0.05). Conventional,
landrace and Bt samples had higher amounts of total
proteins content. Bt samples did not differ from RRxBt
samples, which had higher amounts of total protein
content compared to RR (Tukey HSD =0.76). The differ-
ence in the amount of extracted protein between plant
genotypes did not affect the total number of spots resolved
in the gel once sample loads were normalized to 80 ug per
gel. The average number of spots detected (1123) on the
2D-DIGE gels showed similar patterns and they were
considered well resolved for 24 cm fluorescent gel. No
statistically significant differences (P < 0.05) were found
between plant genotypes for number of spots detected.
In two dimensional gel electrophoresis, the lack of

reproducibility between gels leads to significant system vari-
ability making it difficult to distinguish between technical
variation and induced biological change. On the other
hand, the methodological approach used in the present
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work, called 2D-DIGE, provides a platform for controlling
variation due to sample preparation, protein separation and
difference detection by fluorescent labeling and the co-
migration of treatment and control samples in the same gel
[61-63]. Nonetheless, each 2D-DIGE run consisted of three
samples, two of which were randomly selected from all
plant variety samples and one being an internal standard
used in all runs for normalization purposes.

Principal Component Analysis (PCA)
PCA was used to demonstrate similarities in protein
quantity between different gels and to gain insight
into possible proteome x transgene interactions in the
Figure 2 PCA score plots of proteome data of genetically modified stack
and landrace maize variety. Proteome data was obtained by 2D-DIGE analys
PC1 and PC2 (A) and PC1 and PC3 (B) show the results of ‘RR’ samples (transge
(MON-89Ø34-3 event, filled circles), ‘RRxBt’ samples (transgenic maize seedlings
samples (conventional non-transgenic near isogenic maize variety, blank triang
dataset. In the analysis of the PCA, the first four eigen-
values corresponded to approximately 80% of accumu-
lated contribution. All fifteen samples were represented
2-dimensionally using their PC1, PC2 and PC3 scores
(in two separated plots), revealing groups of samples
based on around 66% of all variability (Figure 2A and
B). This analysis showed a complete separation in the
first plot (PC1 × PC2) between the transgenic events
containing insecticidal Cry proteins and other maize
varieties that do not express those (the conventional, the
landrace and the RR transgenic event), which explained
28.1% of the total variation (F1 values below −21.3 and
above +29.9, respectively). PC2 explained 22.5% of the
ed and single events, non-genetically modified near-isogenic variety,
is from leaf material of maize plants grown under controlled conditions.
nic maize seedlings from MON-ØØ6Ø3-6 event, filled squares), ‘Bt’ samples
from MON-89Ø34-3 x MON-ØØ6Ø3-6 event, filled triangles), ‘CONV’
les), and ‘landrace’ (Pixurum 5 landrace variety, blank squares).
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variation and showed a separation of plant genotypes
containing RR transgene.
The results from our previous investigation, using

another Bt event (MON-ØØ81Ø-6) grown under two
different agroecosystems, showed that the environment
was the major source of influence to the maize proteome
and accounted for 20% of the total variation. However, the
different genotypes (Bt and comparable conventional)
accounted for the second major source of variability, about
9% [25].
Barros et al. [64] used the same RR transgenic event

utilized in the present study and a different Bt event
(MON-ØØ81Ø-6) in the same genetic background and
found an interesting proteomic pattern that accounted
for 31% of the total variation in their dataset. RR
maize samples were grouped separately from Bt and
conventional samples grown at field conditions. This
pattern was also observed in their microarray and gas
chromatographic/mass spectrometric metabolite profile
analysis. Even when the environment or the plant genetic
background accounts for the majority of the quantitative
data variation, transgenic and their conventional near-
isogenic varieties are frequently observed in separated
groups by PCA [65].
In our second plot (PC1 × PC3) another clear separation

was observed for landrace samples, thus explaining
15.6% of the variation in the full dataset (Figure 2B).
Unexpectedly, the landrace variety did not account
for the majority of the variation in the dataset. There was
no variation between biological replicates within each
plant variety, but pool 2 from RR samples seems to deviate
from other replicates.
Although 66.2% of the variation might represent the

majority of the total variation, care must be taken
when interpreting these results because other sources
of variation might be present in subsequent factors.
A landrace variety was included in this study in order

to consider the extent of proteomic variation related to
different maize genetic backgrounds, as well as to possibly
disclose differences in GM lines that might fit within the
variation observed in non-modified materials. It should be
emphasized that the use of non-GM varieties that are
genetically distant from the GM event under investigation
is not a requirement of international guidelines addressing
the issue for comparative assessments of the environmen-
tal and health risk analysis of GM plants [7]. Thus, the
presence of a biological relevant difference unique to the
GMO being evaluated does not depend on the overall
variation observed in particular environment × gene
scenarios or breeding conditions [11].
A landrace variety was also included in a comparative

analysis of potato tuber proteomes of GM potato varieties
by Lehesranta et al. [66]. These authors found extensive
genotypic variation when analyzing around 25 GM,
non-GM and landrace varieties. Most of the proteins
detected exhibited significant quantitative and qualitative
differences between one or more variety and landraces.
Unfortunately, these authors did not plot all the varieties
in the same PCA.
Taken together, these results demonstrated the relevance

of detecting major sources of variation in the experimental
dataset. Thus, for benchmarking and comparative analysis
approaches, the deployment of broader scale, less biased
analytical approaches for GM safety assessment should also
embrace the issues of sources and extents of variation [67].
It has already been demonstrated that major changes in

the proteomic profile of GM crops are driven by
genotypic, environmental (geographical and seasonal)
and crop management influences (and combinations
thereof) rather than by insertional transgenetic engineer-
ing. However, it has also been observed that the genetic
engineering does have an influence in the modulation of
certain proteins and pathways thereby [68]. Furthermore,
off-target effects of GM crops have also been evidenced at
different levels and some do not directly correspond to
the levels of transgenic protein expression [69]. In
some cases, beneficial effects of the transgene might be
influenced by pleiotropic effects derived from the use of
strong promoters and new proteins [70-72].

Mass spectral identification of differentially expressed
proteins
Comparison of stacked and single GM varieties, in
the same genetic background, and non-GM varieties
(the near-isogenic conventional counterpart and a landrace)
revealed a total of 22 different proteins that were either
present, absent, up- or down-regulated in one of the
hybrids, at a statistically significant level (P < 0.05) (Table 2).
Proteins that were not detected in this study might not be
expressed or fall below the detection limit of approximately
1 ng, and were then considered absent in the sample.
All 22 proteins were identified with Mascot scores

value greater than 202 using Quadrupole Time-of-Flight
(Q-TOF) tandem mass spectrometry analysis (MS/MS)
(P < 0.05). These proteins were all identified in Zea mays
species. Table 2 presents the MS/MS parameters and
protein identification characteristics for this experiment,
while Figure 3 show their location in a representative gel. It
was found that 17 proteins differed in their expression
levels between genotypes and 5 were found to be present
only in one or two specific genotypes. Normalized quantita-
tive values for each of these proteins and statistic analysis
are present in Table 3.
Functional classification of the identified proteins, carried

out in accordance with the KEGG Orthology system
database, showed that they were assigned to one out
of these four main ortholog groups: (a) Metabolism
(Energy, Carbohydrate and biosynthesis of amino acid,



Table 2 Differentially expressed proteins in stacked transgenic maize variety versus controls (single event transgenic maize variety with the same genetic
background) and non-genetically modified counterpart and a landrace by 2D-DIGE analysis

Match
ID

Genebank
ID

Protein name Mascot
score

Sequence
coverage (%)

Peptides Theor. mass
(kDa)

Theor.
pI (pH)

Exp. mass
(kDa)

Exp. pI
(pH)

Fold change
(ANOVA P < 0.05)

Biological process
(KEGG Orthology)

55 gi|11467199 ATP synthase CF1
beta subunit [Zea mays]

2248 72 62 54 5.31 56 5.80 Conv, RR, RRxBt >
Bt > Land

Metabolism (energy metabolism)

155 gi|413948212 hypothetical protein
ZEAMMB73_661450

[Zea mays]

723 44 21 46 5.62 44 5.96 Land > Conv,
RR, Bt, RRxBt

Metabolism (energy metabolism)

156 gi|413939324 glutamate-
oxaloacetate

transaminase2 [Zea mays]

1201 61 43 50 8.43 44 6.12 Land > Bt > Conv,
RR, RRxBt

Metabolism (carbohydrate metabolism;
biosynthesis of amino acids)

231 gi|195622374 fructose-
bisphosphate

aldolase [Zea mays]

798 40 19 40 5.39 37 5.50 Land > Conv,
RR, Bt, RRxBt

Metabolism (carbohydrate metabolism;
biosynthesis of amino acids)

406 gi|414591286 APx2-cytosolic
ascorbate peroxidase

[Zea mays]

1036 59 20 31 5.77 27 5.78 Conv, RR, Bt,
RRxBt > Land

Metabolism (carbohydrate
metabolism; biosynthesis of

amino acids)

426 gi|226504576 APx1 - cytosolic
ascorbate peroxidase

[Zea mays]

772 54 18 27 5.65 26 5.74 Bt > Conv >
RRxBt > RR > Land

Metabolism (carbohydrate
metabolism; biosynthesis

of amino acids)

171 gi|414586172 3-isopropylmalate
dehydrogenase
[Zea mays]

1042 44 23 43 5.62 42 5.18 Conv > Bt >
Land> RR > RRxBt

Metabolism (biosynthesis of
amino acids)

175 gi|195645514 acyl-desaturase
[Zea mays]

441 24 8 45 6.61 42 6.15 Bt > Conv, RR,
RRxBt > Land

Metabolism (fatty acid
metabolism)

177 gi|308081433 coproporphyrinogen III
oxidase [Zea mays]

321 24 9 47 7.23 42 6.12 Conv, Bt > RR,
RRxBt > Land

Metabolism (cofactors
and vitamins metabolism)

762 gi|226499080 dihydroflavonol-
4-reductase
[Zea mays]

534 36 14 35 5.43 33 5.83 RR > Conv, Bt,
RRxBt > Land

Metabolism (biosynthesis of
other secondary metabolites)

64 gi|226492645 vacuolar ATP synthase
subunit B [Zea mays]

711 45 17 54 5.07 54 5.19 Bt, RRxBt >
Conv, Land, RR

Metabolism (energy metabolism);
Cellular Processes (transport
and catabolism; phagosome)

105 gi|162458207 enolase 1 [Zea mays] 1604 67 29 48 5.20 49 5.60 RR > Bt > Conv >
RRxBt > Land

Metabolism (carbohydrate
metabolism; biosynthesis of

amino acids); Genetic Information
Processing (Folding, sorting and
degradation); Environmental
Information Processing (signal

transduction)

437 gi|413951084 hypothetical protein
ZEAMMB73_536198

[Zea mays]

416 32 9 28 5.14 26 5.39 Land > Conv >
Bt > RR > RRxBt

Metabolism (metabolism of
cofactors and vitamins); Genetic
Information Processing (transfer

RNA biogenesis)
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Table 2 Differentially expressed proteins in stacked transgenic maize variety versus controls (single event transgenic maize variety with the same genetic
background) and non-genetically modified counterpart and a landrace by 2D-DIGE analysis (Continued)

714 gi|195619804 enolase [Zea mays] 663 40 16 48 5.59 56 6.05 Land > Conv, Bt,
RRxBt > RR

Metabolism (carbohydrate
metabolism; biosynthesis of

amino acids); Genetic Information
Processing (Folding, sorting and
degradation); Environmental

Information Processing
(signal transduction)

137 gi|226505740 DIMBOA UDP-
glucosyltransferase
BX9 [Zea mays]

1197 49 23 50 5.15 45 5.43 RR > Conv,
RRxBt > Bt > Land

Metabolism (biosynthesis of
other secondary metabolites);
Genetic Information Processing

(folding, sorting and degradation)

415 gi|414591366 6-phosphogluconolactonase
isoform 1 [Zea mays]

333 28 7 35 7.71 26 5.08 Conv, RR, Bt,
RRxBt > Land

Metabolism (carbohydrate
metabolism; biosynthesis

of amino acids)

421 gi|195611274 14-3-3-like
protein [Zea mays]

858 67 23 29 4.82 26 4.93 Bt, RRxBt >
Conv, Land, RR

Environmental Information
Processing (signal transduction);
Cellular Processes (cell growth

and death); Exosome (exosomal protein)

572 gi|226504688 uncharacterized
protein LOC100272933
precursor [Zea mays]

202 13 9 22 6.02 19 6.62 Bt, RRxBt only Metabolism (carbohydrate metabolism)

345 gi|195619262 gibberellin receptor
GID1L2 [Zea mays]

244 20 5 33 4.93 31 5.06 Bt, RRxBt only Environmental Information
Processing (signal transduction)

545 gi|195626524 2-cys peroxiredoxin
BAS1 [Zea mays]

160 23 4 28 5.81 21 4.56 Bt, RRxBt only Cellular Processes (transport
and catabolism)

38 gi|226493235 LOC100281701
[Zea mays]

1110 41 17 61 5.20 59 5.15 RR only Genetic Information Processing
(folding, sorting and degradation)

750 gi|226530174 ankyrin repeat
domain-containing
protein 2 [Zea mays]

619 57 16 38 4.57 36 4.66 RR only Genetic Information Processing
(folding, sorting and degradation)

Proteins were considered differentially modulated at statistical significant difference in normalized volume in stacked vs. single GM events and control samples at ANOVA P < 0.05. Proteins were classified in functional
categories based on the ExPASy, KEGG Orthology databases and on careful literature evaluation. The Table reports spot number (Match ID), accession number and protein name, together with Mascot score, sequence
coverage, number of matched peptides, theoretical and experimental molecular weight (MW), isoelectric point (pI) and fold change. Abbreviations for each plant variety are provided within ‘Methods’ section.
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Figure 3 Representative 24 cm two-dimensional gel electrophoresis (2D-DIGE) image of the proteome of genetically modified maize
plant leaves AG8025 hybrid varieties MON-89Ø34-3 and MON-ØØ6Ø3-6 single events, and MON-89Ø34-3 x MON-ØØ6Ø3-6 stacked
event, and non-modified maize (conventional counterpart AG8025 hybrid variety and landrace Pixurum 5 variety) grown under
controlled conditions. Two random replicate samples were run together with an internal standard sample, each labeled with a different
fluorescence. Individualgel images were obtained and plotted together using ImageQuant TL software from GE healthcare. Linear isoelectric
focusing pH 4–7 for the first dimension and 12% SDS–PAGE gels in the second dimension were used. Molecular mass standard range from 250
to 10 kDa are given on the left side. Red arrows point to differentially expressed protein spots selected for mass spectrometry identification. ID of
identified proteins from Table 2 are indicated in red numbers.
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Fatty acid, Cofactors and vitamins, Secondary metabolites),
(b) Cellular Processes (Transport and catabolism, Cell
growth and death), (c) Genetic Information Processing
(Folding, sorting and degradation, Transfer RNA biogenesis),
and (d) Environmental Information Processing (Signal
transduction). The ‘Metabolism’ group constituted the
major category for all proteomes (77% of all identified
proteins), although represented by different proteins.
We have performed an enrichment analysis in order to

rank associations between our set of identified proteins
representing metabolic pathways with a respective statistical
probability (Table 4). The results show that only seven pro-
teins were assigned to statistically significant pathways.
These pathways can be grouped into two main categories:
the energy/carbohydrate metabolism (glycolysis, gluconeo-
genesis, tricarboxylic acid cycle – TCA cycle, glucose and
xylose degradation, and L-ascorbate degradation) and the
detoxification metabolism (ascorbate glutathione cycle).
These will be discussed separately in the following sections.
Five exclusive proteins that belong to different pro-

tein families were identified through a detailed interpret-
ation of all identified proteins. These are: cupin family
(uncharacterized protein LOC100272933 precursor - Bt
and RRxBt samples; carbohydrate metabolism), esterase
and lipase family (gibberellin receptor GID1L2 - Bt and
RRxBt samples; environmental information processing),
peroxiredoxin family (2-cys peroxiredoxin BAS1 - Bt
and RRxBt samples; transport and catabolism), chaperonin
family (LOC100281701 - RR samples; genetic information
processing), and ankyrin repeat family (ankyrin repeat
domain-containing protein 2 - RR samples; genetic
information processing).
Six proteins were differentially expressed in landrace only.

These are ATP synthase CF1 beta subunit (Match ID 55),
hypothetical protein ZEAMMB73_661450 (Match ID
155), glutamate-oxaloacetate transaminase2 (Match ID
156), fructose-bisphosphate aldolase (Match ID 231),
APx2-cytosolic ascorbate peroxidase (Match ID 406) and
6-phosphogluconolactonase isoform 1 (Match ID 415).
Enolase proteins were also assigned to two other spots

(Match ID 105 and 714), the latter was expressed at
higher levels in single GM events. ATP synthase, which
was identified in spots ID 55 and 64, was expressed at a
higher level in the vacuole of mono-transgenic Bt maize.
These proteins are considered to represent different protein
isoforms resulting from posttranslational modifications that
introduce changes of molecular weight (MW) and/or
isoelectric point (pI).

Proteins related to energetic homeostasis
The identity of proteins related to the energetic metabol-
ism can be found in Table 2. They belong to the protein
families of ATP synthases, NADH dehydrogenases,
aminotransferases, fructose-bisphosphate aldolases, perox-
idases, isopropylmalate dehydrogenases, enolases and the
cupin family. Except for the cupin protein that was only



Table 3 Relative protein expression levels analysis of
differentially modulated (P < 0.05) proteins measured by
2D-DIGE analysis

Match Conventional Landrace RR Bt RRxBt

55 0.713 a 0.511 b 0.804 a 0.621 ab 0.731 a

64 0.934 b 0.920 b 0.831 b 1.161 a 1.097 a

105 0.865 abc 0.647 c 0.994 a 0.948 ab 0.704 bc

137 0.934 ab 0.646 c 1.174 a 0.816 bc 0.974 ab

155 0.696 b 0.939 a 0.782 b 0.775 b 0.694 b

156 0.709 b 0.949 a 0.778 b 0.837 ab 0.725 b

171 1.375 a 1.181 abc 0.954 bc 1.272 ab 0.921 c

175 0.928 ab 0.659 b 0.807 ab 0.981 a 0.926 ab

177 1.035 a 0.555 b 0.857 ab 0.898 a 0.815 ab

231 0.891 b 1.090 a 0.793 b 0.860 b 0.905 b

406 1.157 a 0.696 b 1.169 a 1.074 a 1.027 a

415 0.862 a 0.330 b 1.192 a 0.947 a 1.032 a

421 0.739 b 0.652 b 0.750 b 0.997 a 0.847 ab

426 0.993 ab 0.780 c 0.851 bc 1.077 a 0.902 abc

437 1.055 ab 1.077 a 0.887 bc 0.977 abc 0.812 c

714 0.910 ab 0.954 a 0.650 b 0.880 ab 0.765 ab

762 0.880 ab 0.467 b 1.228 a 0.850 ab 0.914 ab

345 - - - 1.119a 0.676b

545 - - - 0.709b 0.806a

572 - - - 0.945a 0.688b

38 - - 0.920 - -

750 - - 1.248 - -

Modulations are reported as normalized spot volume in stacked vs. single GM
event plants and control samples. Tukey Test was applied at P < 0.05 for
means separation and statistical significance. The different letters represents
statistically significant mean values. For the last 5 spots (345, 545, 572, 38 and
750) missed values in protein abundance is not reported because these
proteins were not detected in these respective plant varieties. Protein
identities are provided in Table 2 according to their Match ID number.
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detected in Bt and RRxBt samples, all proteins were
present in all samples at different levels of expression.
The enrichment analysis provided insight into major

pathways alteration; gluconeogenesis, glucose, xylose and
L-ascorbate degradation are key processes for conversion
of various carbon sources into nutrients and energy.
Enzymes that catalyze such chemical reactions were

already observed in other comparative proteomic studies
of transgenic versus non-transgenic crops. In fact,
the energetic metabolism, including the carbohydrate
metabolism, has been the most frequently observed
protein category within comparative analysis of transgenic
versus non-transgenic crops (see compilation at Table 3
from Agapito-Tenfen et al. [25]).
A detailed analysis of each protein separately shows

interesting modulation patterns. Enolase enzymes that
participate in the glycolysis pathway were differentially
modulated in single versus stacked GM events (Match ID
105 and 714). For spot 105, RRxBt samples showed
reduced expression levels compared to single GM
events and the conventional variety, while spot 714
was less abundant in RR samples. Barros et al. [64]
also found differential modulation of enzymes related
to the glycolysis by analyzing gene expression mean
levels (3 years) obtained by microarray profiling of
maize grown in South Africa. The results demonstrated
that glyceraldehyde 3-phosphate dehydrogenase was
expressed at higher levels in Bt-transgenic plants than in
non-transgenic and RR samples. Furthermore, Coll et al.
[73] observed lower levels of triose-phosphate isomerase
protein, also a glycolysis enzyme, in Bt-transgenic plants
than in their non-transgenic counterpart. Indeed, the
flux through of the glycolysis metabolic pathway can
be regulated in several ways, i.e. through availability
of substrate, concentration of enzymes responsible for
rate-limiting steps, allosteric regulation of enzymes and
covalent modification of enzymes (e.g. phosphorylation)
[74]. Currently, the transcriptional control of plant glycolysis
is poorly understood [75]. Studies on transgenic potato
plants exhibiting enhanced sucrose cycling revealed a
general upregulation of the glycolytic pathway, most
probably mediated at the level of transcription [75].
Higher levels of sucrose and fructose were observed in

Bt-transgenic maize plants than in RR transgenic maize
and non-transgenic samples obtained by H-NMR-based
metabolite fingerprinting [64].
Intensive nuclear functions, such as transgenic DNA

transcription and transport of macromolecules across
the nuclear envelope, require efficient energy supply.
Yet, principles governing nuclear energetics and energy
support for nucleus-cytoplasmic communication are
still poorly understood [76,77]. Dzeja et al. [77] have
suggested that ATP supplied by mitochondrial oxidative
phosphorylation, not by glycolysis, supplies the energy
demand of the nuclear compartment.
Higher expression levels of ATP synthase, an enzyme that

participates in the oxidative phosphorylation pathway, were
observed in Bt and RRxBt plants compared to Bt and
conventional (Match ID 64). Regarding 3-isopropylmalate
dehydrogenase (Match ID 171), which is related to the
TCA cycle, it was differentially modulated in all GM events,
whereas plants expressing the stacked event had lower
levels compared to Bt single GM event, and RR samples
had intermediate levels.

Proteins related to other cellular metabolic pathways and
processes
Proteins assigned to other pathways than those related to
the energetic metabolism were grouped in this section.
The enrichment analysis revealed an additional major
metabolic pathway, i.e. the ascorbate-glutathione cycle,
which is part of the detoxification metabolism in plants.



Table 4 BioCyc database collection enrichment analysis for the differentially expressed proteins in stacked vs. single
GM event maize plants and control samples

Pathway term P-values Proteins assigned to the pathway

Glycolysis 7.538e-4 fructose-bisphosphate aldolase; 14-3-3-like protein; enolase; enolase 1.

Gluconeogenesis 8.781e-4 fructose-bisphosphate aldolase; 14-3-3-like protein; enolase; enolase 1.

Superpathway of cytosolic Glycolysis (plants), Pyruvate
Dehydrogenase and TCA Cycle

0.006 fructose-bisphosphate aldolase; 14-3-3-like protein; enolase; enolase 1.

Superpathway of Anaerobic Sucrose Degradation 0.007 fructose-bisphosphate aldolase; 14-3-3-like protein; enolase; enolase 1.

Sucrose Degradation 0.011 fructose-bisphosphate aldolase; 14-3-3-like protein; enolase; enolase 1.

L-Ascorbate Degradation 0.003 APx1 - cytosolic ascorbate peroxidase; APx2-cytosolic ascorbate peroxidase.

Ascorbate Glutathione Cycle 0.004 APx1 - cytosolic ascorbate peroxidase; APx2-cytosolic ascorbate peroxidase.

Glucose and Xylose Degradation 0.006 6-phosphogluconolactonase isoform 1; enolase; enolase 1.

The identified pathways were searched against the maize (Zea mays mays) genome database at statistical level of P < 0.01.
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Thus, ascorbic acid acts as a major redox buffer and
as a cofactor for enzymes involved in regulating
photosynthesis, hormone biosynthesis, and regenerating
other antioxidants [78].
Other identified proteins are enzymes related to fatty

acid, vitamin and secondary metabolite metabolism;
transport and catabolism and cell growth and death;
folding, sorting and degradation of nucleic acids; and
signal transduction. Table 3 shows expression levels
obtained by 2D-DIGE experimentation.
Coproporphyrinogen III oxidase and S-adenosyl

methionine (SAM) (Match ID 177 and 437) are an
important enzyme and co-factor, respectively, that act
within the metabolism of vitamins in plants. They were
modulated in similar manners in each maize variety, with
higher expression in the conventional variety. The former
enzyme plays an important role in the tetrapyrrole biosyn-
thesis that is highly regulated, in part to avoid the accumu-
lation of intermediates that can be photoactively oxidized,
leading to the generation of highly reactive oxygen interme-
diates (ROI) and subsequent photodynamic damage [79].
SAM plays a critical role in the transfer of methyl groups to
various biomolecules, including DNA, proteins and small-
molecular secondary metabolites [80]. SAM also serves as
a precursor of the plant hormone ethylene, implicated in
the control of numerous developmental processes [81].
Two other proteins related to the synthesis of secondary

metabolites were expressed at statistically different levels.
These are Match ID 137 and 762.
It has been observed that both these enzymes are

expressed at higher levels in all hybrid plants (GM
and non-GM) than in the landrace samples. DIMBOA
UDP-glucosyltransferase BX9 is an enzyme that participates
in the synthesis of 2,4-Dihydroxy-7-methoxy-1,4-benzoxa-
zine- 3-one (DIMBOA) compound that plays an important
role in imparting resistance against disease and insect pests
in gramineous plants [82] as well as herbicide tolerance
[83]. DIMBOA decreases in vivo endoproteinase activity in
the larval midgut of the European corn borer (Ostrinia
nubilalis), limiting the availability of amino acids and
reducing larval growth [84,85]. The protection against
insect attack that DIMBOA confers to the plant is,
however, restricted to early stages of plant development,
because DIMBOA concentration decreases with plant age
[86-88]. The other enzyme related to the metabolism of
secondary metabolites follows exactly the same trend in
expression. Dihydroflavonol-4-reductase catalyzes a key step
late in the biosynthesis of anthocyanins, condensed tannins
(proanthocyanidins), and other flavonoids, important for
plant survival, including defense against herbivores [89].
Two enzymes related to genetic information processing

were observed in RR samples only. Match ID 750 was
identified to contain an ankyrin repeat domain. The ankyrin
repeats are degenerate 33-amino acid repeats found in
numerous proteins, and serve as domains for protein-
protein interactions [90]. By using antisense technique,
Yan et al. [91] were able to reduce the expression levels of
an ankyrin repeat-containing protein, which resulted in
small necrotic areas in leaves accompanied by higher pro-
duction of H2O2. These results were found to be similar
to the hypersensitive response to pathogen infection in
plant disease resistance [91]. Although we were not able
to identify an annotated protein to Match ID 38, blast
results show that this protein belong to the chaperonin
protein family. Chaperones are proteins that assist the
non-covalent folding or unfolding and the assembly or
disassembly of other macromolecular structures. Therefore,
cells require a chaperone function to prevent and/or to
reverse incorrect interactions that might occur when poten-
tially interactive surfaces of macromolecules are exposed to
the crowded intracellular environment [92]. A large fraction
of newly synthesized proteins require assistance by molecu-
lar chaperones to reach their folded states efficiently and on
a biologically relevant timescale [93].
Another relevant class of enzymes is linked to plant

perception and response to environmental conditions
(environmental information processing). An important
protein of this category is gibberellin receptor GID1L2



Agapito-Tenfen et al. BMC Plant Biology 2014, 14:346 Page 15 of 18
http://www.biomedcentral.com/1471-2229/14/346
(Match ID 345). Gibberellins (GAs) are hormones that are
essential for many developmental processes in plants,
including seed germination, stem elongation, leaf expan-
sion, trichome development, pollen maturation and the
induction of flowering [94]. This protein was only detected
in Bt-transgenic plant samples and RRxBt samples).

Contributions to the risk assessment of stacked
transgenic crop events
Recent discussions about potential risks of stacked
events, as well as the opinion of the European Food Safety
Authority (EFSA) on those issues, have highlighted the
lack of consensus with regard to whether such GMOs
should be subject to specific assessments [59]. Similar
debates have taken place in the Brazilian CTNBio, while
approving stacked GM events under a simplified risk
assessment procedure provided by Normative Resolution
no 8 from 2009 [4].
As for the above-mentioned regulatory bodies, both con-

sidered the need for a comparative evaluation of transgene
expression levels in stacked GM event versus parental
events (single events that have been crossed to produce the
stacked event), and the need to consider any potential
interaction of combined GM traits in the stacked events.
It is clear, for reasons discussed previously in this

paper, that expression levels of stacked GM events are of
major concern. On the other hand, testing potential
interactions of stacked transgenic proteins, and of genetic
elements involved in its expression, is an obscure issue
and simple compositional analysis and/or evaluation of
agronomic characteristics might not make contributions
to further clarification.
Molecular profiling at the hazard identification step

can fill the biosafety gap emerging from the development
of new types of GMOs that have particular assessment
challenges [11].
Over the past few years a number of published studies

have used general “omics” technologies to elucidate possible
unintended effects of the plant transformation event
and transgene expression [12,95-97]. These studies have
mainly compared single events with their non-transgenic
near-isogenic conventional counterpart.
So far, no other study has compared differentially

expressed proteins in stacked GM maize events and
their parental single event hybrids and non-transgenic
varieties. Hence, there is a lack of data of a kind that
might be important in order to reliably assess the safety
of stacked GM events.

Conclusions
In conclusion, our results showed that stacked GM
genotypes were clustered together and distant from other
genotypes analyzed by PCA. In addition, we obtained evi-
dence of possible synergistic and antagonistic interactions
following transgene stacking into the GM maize genome
by conventional breeding. This conclusion is based on the
demonstration of twenty-two proteins that were statisti-
cally differentially modulated. These proteins were mainly
assigned to the energy/carbohydrate metabolism (77% of
all identified proteins). Many of these proteins have also
been detected in other studies. Each of those was per-
formed with a different plant hybrid genotype, expressing
the same transgene cassette, but grown under distinct
environmental conditions. Moreover, transgenic transcript
accumulation levels demonstrated a significant reduction
of about 34% when compared to parental single event var-
ieties. Such observations indicate that the genome changes
in stacked GM maize may influence the overall gene
expression in ways that may have relevance for safety
assessments. Some of the identified protein modulations
fell outside the range of natural variability observed in a
commonly used landrace. This is the first report on com-
parative proteomic analysis of stacked versus single event
transgenic crops. However, the detection of changed pro-
tein profiles does not present a safety issue per se, but calls
for further studies that address the biological relevance
and possible safety implications of such changes.
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